Tupic 10-
Reduction of order

P

In this section we give a specialized
technique for finding a second solution to

$$
Q_2(x)y'' + Q_1(x)y' + Q_0 y = 0
$$

when $Q_2(x) \ne 0$ for all x in \pm
and you already know one solution
to this equation.
Since we are assuming that $Q_2(x) \ne 0$
for all x in \pm we can divide by
for all x in \pm we can divide by
if and assume our equation is of
the form
 $y'' + Q_1(x)y' + Q_0(x)y = 0$ (*)
Suppose y_1 is a known solution
to (\pm) and further
assume $y_1(x) \ne 0$ for all x in \pm .

Let
$$
y_z(x) = v(x) \cdot y_1(x)
$$
.
\nWe want to find v so y_2 also
\nSolves (\star) .
\nWe know by assumption that
\n $y_1'' + a_1(x) y_1' + a_0(x) y_1 = 0$
\nSince $y_2 = v \cdot y$, we get
\n $y_2' = v' y_1 + v' y_1'$
\n $y_2'' = v'' y_1 + v' y_1' + v' y_1''$
\n $y_2'' = v'' y_1 + v' y_1' + v' y_1''$
\n $= v'' y_1 + 2v' y_1' + v' y_1''$
\n $= v'' y_1 + 2v' y_1' + v' y_1''$
\n $= v'' y_1 + 2v' y_1' + v' y_1''$
\n $= v'' y_1 + 2v' y_1' + v' y_1''$
\n $= v'' y_1 + 2v' y_1' + v' y_1''$
\n $= v'' y_1 + v' y_1' + v' y_1''$
\n $= v'' y_1 + v' y_1' + v' y_1''$
\n $= v'' y_1 + v' y_1' + v' y_1''$
\n $= v'' y_1 + v' y_1' + v' y_1''$
\n $= v'' y_1 + v' y_1' + v' y_1''$
\n $= v'' y_1 + v' y_1' + v' y_1''$
\n $= v'' y_1 + v' y_1' + v' y_1''$
\n $= v'' y_1 + v' y_1' + v' y_1''$
\n $= v'' y_1 + v' y_1' + v' y_1''$
\n $= v'' y_1 + v' y_1' + v' y_1''$
\n $= v'' y_1 + v' y_1' + v' y_1''$
\n $= v'' y_1 + v' y_1' + v' y_1''$
\n $= v'' y_1 + v' y_1' + v' y_1''$
\n $= v'' y_1 + v' y_1' + v' y_1''$
\n $= v'' y_1 + v' y_$

$$
v''y_1 + v'(2y'_1 + a_1(x)y_1) = 0
$$

This becomes $V^{\prime\prime}$ - $2y_{1}^{\prime}-a_{1}(x)y_{1}$ $\frac{v^{\prime}}{v^{\prime}}$ $\overline{\vee}$ + $v'(2y'_1 + a_1(x)y_1)$

umes

= $\frac{-2y'_1 - a_1(x)y_1}{y_1}$ <u>y</u> լ

$$
Which^{is}
$$
\n
$$
\frac{v''}{v'} = \frac{-2y_1'}{y_1} - a_1(x)
$$
\n
$$
Inlegch2 in y with (espec+ b x) gives
$$
\n
$$
Inlegch2 in y with (espec+ b x) gives
$$

This gives
$$
y' = e^{-\int a(x)dx}
$$

\n
$$
v' = \frac{1}{y_i^2} \cdot e^{-\int a_i(x)dx}
$$
\n
$$
v = \int e^{-\int a_i(x)dx} dx
$$

 And $y_2 = V \cdot y_1$.

Note that
$$
y_1
$$
 and y_2 will be linearly
\nindependent because
\n $W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} y_1 & y_1 \\ y_1' & y_1' \end{vmatrix}$
\n $= y_1 V^1 y_1 + y_1 V y_1^1 - y_1' V y_1$
\n $= y_1^2 V^1$
\n $= e^{-\int a_1(x) dx} \neq 0$
\n $= e^{-\int a_1(x) dx} \neq 0$

Note that
$$
y_1
$$
 and y_2 will be linearly
\nindependent because
\n
$$
W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}
$$
\n
$$
= y_1 \sqrt{y_1 + y_1 y_1 - y_1'} \sqrt{y_1}
$$
\n
$$
= y_1^2 \sqrt{y_1}
$$
\n
$$
= e^{-\int a_1(x) dx} \neq 0
$$
\n
$$
= e^{-\int a_1(x) dx} \neq 0
$$
\n
$$
= e^{-\int a_1(x) dx} \neq 0
$$
\n
$$
= \int e^{-\int a_1(x) dx} \neq 0
$$
\n
$$
= \int e^{-\int a_1(x) dx} \neq 0
$$
\n
$$
= \int e^{-\int a_1(x) dx} \neq 0
$$
\n
$$
= \int e^{-\int a_1(x) dx} \neq 0
$$
\n
$$
= \int e^{-\int a_1(x) dx} \neq 0
$$
\n
$$
= \int e^{-\int a_1(x) dx} \neq 0
$$
\n
$$
= \int e^{-\int a_1(x) dx} \neq 0
$$
\n
$$
= \int e^{-\int a_1(x) dx} \neq 0
$$
\n
$$
= \int e^{-\int a_1(x) dx} \neq 0
$$
\n
$$
= \int e^{-\int a_1(x) dx} \neq 0
$$
\n
$$
= \int e^{-\int a_1(x) dx} \neq 0
$$
\n
$$
= \int e^{-\int a_1(x) dx} \neq 0
$$
\n
$$
= \int e^{-\int a_1(x) dx} \neq 0
$$
\n
$$
= \int e^{-\int a_1(x) dx} \neq 0
$$
\n
$$
= \int e^{-\int a_1(x) dx} \neq 0
$$
\n
$$
= \int e^{-\int a_1(x) dx} \neq 0
$$
\n
$$
= \int e^{-\int a_1(x) dx
$$

$$
\frac{Fx: \text{Consider the equation}}{(\frac{x^{2}+1}{x^{2}+1}y^{1}-2xy^{1}+2y=0} \quad (*)
$$
\n
$$
\frac{(x^{2}+1)y^{1}-2xy^{1}+2y=0}{4x^{2}+1+y^{2}} \quad (*)
$$
\n
$$
\text{One can guess that } y_{1}=x \text{ is a}
$$
\n
$$
\text{So, which } \frac{1}{x^{2}+1} \text{ as } y^{1}=\frac{2x}{x^{2}+1}y^{1}+\frac{2}{x^{2}+1}y=0
$$
\n
$$
\frac{a_{1}(x)=\frac{2x}{x^{2}+1}}{a_{1}(x)=\frac{2x}{x^{2}+1}} \quad y^{1}=\frac{2x}{x^{2}+1} \quad y^{1}=\frac{2x}{x^{2}+1} \quad y^{1}=\frac{2x}{x^{2}+1} \quad y^{1}=\frac{2x}{x^{2}+1} \quad y^{1}=\frac{2x}{x^{2}+1} \quad y^{2}=\frac{2x}{x^{2}+1} \quad y^{2
$$

$$
= x \int \frac{e^{ln(x^{2}+1)}}{x^{2}} dx
$$

\n
$$
\sqrt{\frac{2x}{x^{2}+1}dx} = \int \frac{1}{x}du = ln|x^{2}+1|
$$

\n
$$
\frac{dx}{dx} = 2x dx
$$

\n
$$
= x \int \frac{x^{2}+1}{x^{2}} dx
$$

\n
$$
= x \int (1+x^{2}) dx
$$

\n
$$
= x
$$

Thus every solution to
$$
(**)
$$
 is of the form
\n $y = c_1y_1 + c_2y_2 = c_1x + c_2(x^2-1)$.